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Correspondence

“Gap Effect” in Measurement of
Large Permittivities

Complex permittivity is frequently deter-
mined from measurements of the trans-
mission—or reflection coefficient of the
dominant mode of a uniformly-filled wave-
guide section [1]. Uniformity is difficult to
achieve in practice, however, because of un-
avoidable gaps between the sample and the
waveguide walls. The importance of gaps
increases with increasing magnitude of the
complex permittivity and may cause large
errors in measurements of high-permittivity
or high-loss (e.g., semiconducting) dielectrics
if proper corrections are not made, The pur-
pose of this note is to examine the range of
validity of several correction formulas found
in the literature by comparing their predic-
tions of measured permittivity with values
actually measured with germanium. During
these measurements, the true magnitude of
the complex relative permittivity of the
germanium was varied between 16.4 and
860.0 by varying the sample temperature.

An empirical formula to correct for the
air gap has been given by Redheffer [2].
This formula can be written

{e(m) — 1} = {& — 1}{1 —1/B} (1)

where ¢(m) and e are “measured” and
“actual” relative permittivities, respectively,
and b and ¢ are dimensions defined in Fig. 1.
Other correction formulas have been given
by Westphal [3] and by Bussey and Gray
[4]. Westphal’s formula can be written [5]
(m) i @)

e(m) = —————

1+ fe — 1} {1/}
while the simple perturbation formula of
Bussey and Gray (evaluated, in this case,

for the rectangular TE;o mode) is

e(m) = 6;«{1 — & — 1][2‘/()]}. (3)

Equation (3) is recognized as being the first
two terms of the expansion of (2) in a power
series in [e,—1][¢/b].

If one assumes that e, is purely real, one
can plot (1)-(3) on a single graph. Such
plots are shown in Fig. 2 for [¢/b]=0.015.
Of the three equations, one sees that only (2)
saturates for large ¢, approaching the limit-
ing value [b/t] regardless of the permit-
tivity of the material.

Experimental points have been plotted
in Fig. 2 for comparison with the theoretical
curves. The experimental values were ob-
tained by using a transmission bridge at
10.5 Gc/s to measure the complex permit-
tivity of a sample of intrinsic germanium
whose height was about 150 microns less
than the b-dimension of the waveguide
([t/b]=20.015). During measurement, the
sample temperature was varied between 300
and 440 degrees K. This varied the conduc-
tivity between 2 and 500 mho/m and
allowed measurements of complex e(#) to

Manuscript received May 16, 1966. This work was
supported by the National Science Foundation under
Grant GP-2360.

N
~
-
F-] €,
E a !

o
~
[,

Fig. 1. Rectangular waveguide showing gap between

dielectric sample and waveguide walls.
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Fig. 2.

Measured relative permittivity as function of actual relative permittivity of sample for [¢/b] =.015.

Theoretical curves assume permittivity is purely real, while experimental points are magnitudes of complex

quantities.

be taken over the wide range of || as shown
in Fig. 2. For simplicity, the complex experi-
mental data have been displayed in Fig. 2
by plotting the magnitude [e{m)] as a
function of |e|.

For a lossy material, (1)-(3) relate com-
plex values of ¢{m) to complex values of e
but do not give exact relationships between
lem)| and |e| directly. They approach
true relationships between complex permit-
tivity magnitudes at low and high conductivi-
ties, however. Between these extremes,
values of |e(m)| determined by operating
directly on [erl with (2) are somewhat low,
a maximum of about 30 percent low at
le.} =200 for the sample used in the present
experiment. Thus, considering the approxi-
mation involved in comparing the theoreti-
cal curves and experimental points of Fig. 2,
one sees that (2) agrees quite well with the
measurements. Note that the experimental
values approach [b/t] for large |e| as (2)
predicts. The other two equations do not

agree as well with the measurements
although (3) is satisfactory for small
[(e—1)(¢/b)| (the region in which it was
actually used by Bussey and Gray [4]).

Equation (2) can be given a simple physi-
cal interpretation [6]. If one equates the
terminal impedances of the parallel plane
capacitors of Fig. 3(a) and solves for e{m),
one obtains (2). Thus, (2) can be represented
by the lumped-parameter circuit of Fig.
3(b). One sees that in this interpretation,
the air gap merely introduces a spurious im-
pedance in series with the bulk impedance
of the material. The importance of the air
gap is determined completely by the relative
size of these two impedances.

Considering the complexity of a general
treatment of an inhomogeneously filled
waveguide, the simplicity of (2) and of
the circuit of Fig. 3(b) is somewhat sur-
prising. In particular, one might expect the
sample dimension in the propagation direc-
tion to be an important consideration. The
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(a)
Air gap
Ci= e/t
>02=e.e,/(b-i)
Bulk material
C(m)= €, €,(m)/b
(b)

Fig. 3. Physical interpretation of Eq. (2). (a) Par-
allel plane model. (b) Equivalent circuit.

simplicity results from the fact that (2)
considers the effect of the gap on only the
dominant mode and neglects all higher-order
modes generated at the planes of dis-
continuity between empty and “filled” wave-
guides, an approach that is rigorously justi-
fied for small perturbations only

(| {e& — 1}{z/0} | < 1).
Since the maximum value of

| {er — 1} {t/0} |
was about 13 in the present experiment, one
sees that (2) gives a “surprisingly” good
qualitative description of “gap effect” for
large perturbations. One should generally
not expect it to be quantitatively accurate in
this range, however.
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Fringing Capacitance in Strip-Line
Coupler Design

Very useful relationships between strip-
line directional coupler dimensions and the
even- and odd-mode impedance have been
derived by S. B. Cohn for both the case of
side-by-side strips [1] (edge coupling) and
broadside coupling [2]. In each case the rela-
tions for even- and odd-mode impedance
contain, respectively, terms for even- and
odd-mode fringing capacitance per unit
length. Cohn has derived relat10nsh1ps
for both even- and odd-mode {fringing capaci-
tances for the case of side-by-side strips [1]
and broadside coupling [2] for strips of zero
thickness, and has published a paper on
thickness corrections [3]. Gunderson and
Guida [4] have shown that for the broadside
coupled case the even- and odd-mode fring-
ing capacitances are not independent and
have thus derived a relationship between the
coupler dimensions and even and odd im-
pedance which does not involve expressions
for the fringing capacitances. This has
led them to formulate a simpler design
procedure [4].

The purpose of this communication is to
show that such a relation also exists for side-
by-side strips.
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Fig. 1. Side-by-side strip coupler cross section.

Cohn’s equations {1] (11) and (12) can
be written [S] when W/6—0.35:

71 = (in Q)
C C
we I:W r + fl]
2er¢0
Zy = (in ©)
C C,
4 \/GT[W 7+ f2:|
e
from which one can solve for
71060\/67 1
=TVe ) GnF
Cso— Cr1 2 AR (in F/m)
where:

Z,=o0dd characteristic impedance
Zs=even characteristic impedance
po=intrinsic impedance of free space

=377 ¢Q

e¢p=permittivity of free space=28.85
X107 F/m

e-=relative permittivity of strip-line
dielectric

b=separation between ground planes
¥ =width of each conducting strip
Cy=fringing capacitance from outside
edges of strip-to-ground planes
(in F/m)
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Cri=Iringing capacitance at adjacent
edges of strips under odd-mode ex-
citation (in F/m)

Cra=Iringing capacitance at adjacent
edges of strips under even-mode
excitation (in F/m).

Also Cohn’s equations [1] (13) and (14) can
be solved to give

2 s
sz - le = ereo; I:—ln (COSh %)

s
in (a0 %) ]
—+ In { sin %
2
Cyo— Cr1 = ¢ep—1In (tanh ll-f)
T 2b

where:
s=separation between strips.

This can be equated to the relation for
fringing capacitances given above to give

r e[ g (- 7)]
b = arcian €xXp 4\/51‘ 2

1
i=—~—1n|:tanh GUU i_}—>]
b T 8vVe \Z1 Z»

Thus, the ratio of strip separation (be-
tween adjacent edges) to ground plane
separation can be determined without the
need to evaluate fringing capacitance. If de-
sired this ratio can be expressed directly in
terms of the midband voltage-coupling
ratio &, since [4]

2= 2o/ (155)

where Zg=characteristic impedance

14+ %
Zo—ZM/ +

1—k

§ 1 0 k ]s
S e~ Zindtanh
5 - ; an [4\/6, Zo Vi

and [1] for strips of zero thickness

1/(l—k s
b 4:\/eTZ0 142 2b

41 [1 h D 1 2]
_ ncosn — —in .
T 2b
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